• 9月19日 Rolf Farnsteiner 💇🏼‍♀️:GEOMETRIC INVARIANTS FOR REPRESENTATIONS OF RESTRICTED LIE ALGEBRAS

    时间👩🏽‍✈️:2019-09-11浏览🥰:186设置


    讲座题目:GEOMETRIC  INVARIANTS FOR REPRESENTATIONS OF RESTRICTED LIE ALGEBRAS

    主讲人:Rolf  Farnsteiner  教授

    主持人:舒斌   教授

    开始时间🧑‍⚕️:2019-09-19  09:00:00   结束时间:2019-09-19  10:00:00

    讲座地址:闵行数学楼102报告厅

    主办单位:数学科学学院

      

    报告人简介👩🏼‍🔬:

            Rolf Farnsteiner😿🤜🏿,现任德国基尔大学(Christian-Albrechts-Universität zu Kiel)教授。他1982年在汉堡大学获得博士学位💇‍♂️。先后任美国Wisconsion大学(Milwaukee)教授,德国Bielefeld大学研究教授, 2010年起担任德国基尔大学教授.他是表示理论界重要数学家。研究领域与研究成果广泛🙎‍♀️。其中⚄,在用代数表示理论方法研究Lie理论的表示及无穷小群概型的表示方面,独树一帜🫰🏼⚀。


    报告内容🛌🏿:

    Much of the progress in the representation  theory of infinitesimal group schemes over the last thirty years has rested  on methods related to cohomological support varieties and rank varieties. In  this talk, we will focus on restricted Lie algebras, which correspond to infinitesimal groups of height 1. Motivated by Carlson’s seminal work on varieties for modular representations of finite groups, Friedlander-Parshall and Jantzen set forth a theory of module varieties for restricted Lie  algebras in the mid-1980s. By introducing Jordan types of modules, their results were augmented and refined about 20 years later by Carlson,  Friedlander, Pevtsova and Suslin. We will begin by reviewing the main aspects of this work along with stating some open problems. Let g be a restricted Lie  algebra. Rank varieties and Jordan types seek to get information on a restricted  g-module M by studying its restrictions M|e with respect the algebraic family  of one-dimensional elementary abelian Lie algebras e  g. In general, the collection E(d,g) of dimensional elementary abelian subalgebras of g is a  closed subset of the Grassmannian Grd(g) of d-planes in g. It thus has the structure of a projective variety. In the second part of my talk, I will discuss more recent work that aims at understanding modules via restrictions  larger subalgebras.This approach utilizes additional geometric invariants, which are obtained by associating morphisms and vector bundles to certain g-modules M. These invariants turn out to be determined by restrictions M|e  to elementary abelian subalgebras e E(d,g) of dimension d2.

      


    返回原图
    /

     

    光辉娱乐专业提供:光辉娱乐🧎‍♂️‍➡️、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,光辉娱乐欢迎您。 光辉娱乐官网xml地图
    光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐